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Outline

• Markov modeling
• Monte Carlo simulation
• Discrete event simulation
• Disease transmission models
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Disease models
• Why do we need to model long term 

disease progression?
– many interventions (particularly pharmaceuticals) 

target chronic diseases that progress over 
decades

– long-term costs and outcomes are important for 
CEA and HTA

– long-term follow-up data on cost and outcomes 
often are lacking
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How might we do this?

• Use decision analysis
– include branches for relevant health outcomes 

over, say, 1 year
– Add branches for outcomes at each subsequent 

year
– Use probabilities that reflect 1-year timeframe
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Tree years 1-2
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uh oh...
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A solution: Markov 
modeling

• Define health states
• Determine allowed (logical) transitions 

between health states
• Determine transition probabilities between 

health states over a given period of time 
(cycle)

• “Run” model over multiple cycles
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A Markov Model

Well Ill

Dead

pW → I

pI→ DpW→D
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Who is Markov?

• Chekov’s brother from Star Trek
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Origins

• Motivation for developing method
• Areas where Markov models are used

– Information theory
– Speech recognition software 
– DNA sequence matching (Hidden Markov Models, 

HMM)
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When?

• Use Markov Model when
– transitions into and out of health states are 

possible, e.g. recurrence of events
– modeling a complex disease
– probabilities vary over time
– the timeframe of the analysis is lengthy
– a decision tree would become too complex
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Types of Markov Models

• Markov chain
– Defined by non-time varying probabilities
– Solution can be derived analytically using matrix 

algebra

• Markov Process
– Uses time-varying probabilities
– Solution requires calculation at each cycle
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How?

1) Define mutually exclusive health states

2) Determine “allowed” transitions (must 
sum to 1.0 for each health state)

3) Derive transition probabilities

4) Calculate outcomes for each cycle
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Markov Chain: Example

• Three mutually exclusive health states:
– Alive, Ill, Dead

• There are n2 transitions where n = # of 
health states
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Transitions

Well Ill

Dead

pW→ I = 0.2

pI→ D = 0.4pW→D = 0.2

pW→ W = 
1 - 0.2 - 0.2

pI→ I = 
1 - 0.4

pD→ D = 1
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P Matrix

   To  

  Well Ill Dead 

 Well 0.6 0.2 0.2 

From Ill 0 0.6 0.4 

 Dead 0 0 1 
 

 

   To  

  Well Ill Dead 

 Well 0.6 0.2 0.2 

From Ill 0 0.6 0.4 

 Dead 0 0 1 
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Matrix solution

• Fundamental matrix solution provides 
exact values for the time spent in each 
health state
– see Beck and Pauker, Med Dec Making 1983;4:419 for 

matrix calculations

• Because of requirement for constant 
probabilities, Markov Chains are very 
rarely used in medical applications
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Markov Process

• Similar idea to Markov Chain, but 
probabilities vary over time, and time 
spent in each health state must be 
calculated at each cycle
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pW→ B=0.2, pW→ D=0.1, pB→ W=0.6, pB→ D=0.2
(pW→W=0.7, pB→B=0.2, pD→D=1.0)

Sum

Sum:

Well Bleed Dead61 18 21

Well Bleed Dead

Well Bleed Dead

100

70

0

20

0

10

100

100

100

231 38 31

Markov Process: Example
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Terminal states
• Also referred to as an “absorbing state”
• The Markov Motel: Patients check in but 

they don’t check out
• In health care, usually the “Dead” state
• Allows models to be run until all patients 

have died - can then calculate life 
expectancies (sum time spent in alive 
states)
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Markovian Assumption

• The past does not matter
• I.e., this year’s transition probability 

does not depend on last year’s health 
state

• I.e., do not keep track of health states 
that have been visited
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Shortcomings due to 
Markovian Assumption

• A patient’s past history (which health 
states they were in during previous 
cycles) does not affect their future 
health

• Not realistic for many diseases
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But can account for disease 
history: add health states

Well MI

Dead 2+ MI

Post-
MI
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Tunnel states

• Definition: patient cannot stay in a 
tunnel stay more than 1 cycle 

• Useful for time-dependent probabilities

• Useful when time-dependent costs
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Tunnel states

Well Hip Fx.
year 1

Dead

Hip Fx.
year 2

Hip Fx.
year 3+
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Deriving Transition 
Probabilities

• Usually obtained from the literature
• Often have data over, say 5 years, 

when you want to use 1 year cycles
• How do you derive a 1-year transition 

probability?
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Divide by 5?

• After 5 years, 50 out of 100 people are 
ill: p(1 year) = 0.10?
– end of year 1: 10 ill, 90 well
– end of year 2: 19 ill, 81 well
– end of year 3: 27 ill, 73 well
– end of year 4: 34 ill, 66 well
– end of year 5: 41 ill, 59 well
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Use formula

• tp1 = 1 - (1 - tpt)1/t

• tp1 is yearly transition probability
• tpt is the overall probability over time t
• So,

– tp1 = 1 - (1 - 0.50)1/5 = 0.129

Briggs and Sculpher, Pharmacoeconomics 1998;13:397



11

31

Can also incorporate 
discounting

• Apply formula to each year -> 
discounted costs, QALYS

• V0 = Vt/(1 + r)t 

• V0 is the net present value, Vt is the 
value at time t, and r is the discount rate
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Rates vs. Risk
• Many texts and articles give a formula for 

converting rates (over t years) into 
probabilities (over 1 year) [e.g. Pettiti, 
Sonnenberg and Beck, Beck and Pauker]

• p = 1 - e-rt

• However, use of this formula is only 
appropriate when actual rates are given

• Serious errors can otherwise occur

Miller and Homan, Med Decis Making 1994;14:52
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• A Rate is
– events/(population time)
– in a fixed cohort, a person’s time after an event is 

removed from the denominator
• A Risk is

– probability a person will experience an event over 
a given period of time

– in a fixed cohort, a person’s time is kept in the 
denominator

– most clinical studies give us this

Rate vs. Risk
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• A Rate is
– Hazard
– Incidence density
– Instantaneous risk

• A Risk is
– probability
– likelihood
– cumulative incidence

Rate vs. Risk
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So

• Make sure you are using proper formula 
for converting risks or rates
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For complex situations, consider 
discrete event simulation

• Avoid Markov model with hundreds or 
more states

• Track history of every event that occurs 
to patient

• Probabilities, costs, utilities may depend 
on history

• Requires extensive programming
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Choosing an approach

Technique Pros Cons 

Decision 
Analysis Simple Not inherently time 

dependent 

Markov Models Easier than DA for 
long timeframes 

Difficult to obtain 
necessary data 

Discrete event 
simulation 

Accounts for previous 
history, detail Time-consuming 

Differential 
equations 

Easier to model 
populations Not detailed 
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Diseases and models

Technique Diseases 

Decision 
Analysis Acute: Infection 

Markov 
Models Chronic: HTN, hypercholesteremia 

Discrete event 
simulation Complex: AIDS 

Differential 
equations 

Population-based: Communicable 
diseases, e.g. TB, HIV 
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• Draw the structure of a Markov model that 
models Hepatitis C

• The following are the health states
– Mild chronic hepatitis C (MCH)
– Cirrhosis
– Hepatocellular carcinoma
– Ascites
– Esophogeal varicies
– Hepatic encephalopathy
– Liver transplantation

In-class modelling


